Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Clinics ; 64(9): 911-919, 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-526332

ABSTRACT

PRUPOSE: Bacterial translocation has been shown to occur in critically ill patients after extensive trauma, shock, sepsis, or thermal injury. The present study investigates mesenteric microcirculatory dysfunctions, the bacterial translocation phenomenon, and hemodynamic/metabolic disturbances in a rat model of intestinal obstruction and ischemia. METHODS: Anesthetized (pentobarbital 50 mg/kg, i.p.) male Wistar rats (250-350 g) were submitted to intestinal obstruction or laparotomy without intestinal obstruction (Sham) and were evaluated 24 hours later. Bacterial translocation was assessed by bacterial culture of the mesenteric lymph nodes (MLN), liver, spleen, and blood. Leukocyte-endothelial interactions in the mesenteric microcirculation were assessed by intravital microscopy, and P-selectin and intercellular adhesion molecule (ICAM)-1 expressions were quantified by immunohistochemistry. Hematocrit, blood gases, lactate, glucose, white blood cells, serum urea, creatinine, bilirubin, and hepatic enzymes were measured. RESULTS: About 86 percent of intestinal obstruction rats presented positive cultures for E. coli in samples of the mesenteric lymph nodes, liver, and spleen, and 57 percent had positive hemocultures. In comparison to the Sham rats, intestinal obstruction induced neutrophilia and increased the number of rolling (~2-fold), adherent (~5-fold), and migrated leukocytes (~11-fold); this increase was accompanied by an increased expression of P-selectin (~2-fold) and intercellular adhesion molecule-1 (~2-fold) in the mesenteric microcirculation. Intestinal obstruction rats exhibited decreased PaCO2, alkalosis, hyperlactatemia, and hyperglycemia, and increased blood potassium, hepatic enzyme activity, serum urea, creatinine, and bilirubin. A high mortality rate was observed after intestinal obstruction (83 percent at 72 h vs. 0 percent in Sham rats). CONCLUSION: Intestinal obstruction and ischemia in rats is a relevant model for ...


Subject(s)
Animals , Male , Rats , Bacterial Translocation/physiology , Escherichia coli/physiology , Intestinal Obstruction/physiopathology , Intestine, Small/blood supply , Ischemia/physiopathology , Microcirculation/physiology , Biomarkers/blood , Disease Models, Animal , Immunohistochemistry , Intestinal Obstruction/blood , Intestinal Obstruction/microbiology , Intestine, Small/microbiology , Intestine, Small/physiopathology , Multiple Organ Failure/physiopathology , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL